Deep Multi-Attributed-View Graph Representation Learning
نویسندگان
چکیده
Graph representation learning aims at mapping a graph into lower-dimensional feature space. Deep attributed representation, utilizing deep models on the structure and attributes, shows its significance in mining complex relational data. Most existing assume attributes single-attributed view. However, rich information real-world applications demands ability to handle multiple views. For example, social network users’ profiles posts represent two distinct A view or simple ensemble of them fails relations therein. To confront this challenge, paper proposes novel unsupervised model, called Multi-attributed-view Convolutional AutoEncoder (MagCAE). MagCAE learns node-pairwise proximity among multi-attributed views node embeddings, across which loss function is designed preserve likelihood. An aggregation layer specially developed optimize weights embeddings The extensive experiments four datasets demonstrate superiority over twelve baselines.
منابع مشابه
On Deep Multi-View Representation Learning
We consider learning representations (features) in the setting in which we have access to multiple unlabeled views of the data for representation learning while only one view is available at test time. Previous work on this problem has proposed several techniques based on deep neural networks, typically involving either autoencoderlike networks with a reconstruction objective or paired feedforw...
متن کاملDeep Learning Multi-View Representation for Face Recognition
Various factors, such as identities, views (poses), and illuminations, are coupled in face images. Disentangling the identity and view representations is a major challenge in face recognition. Existing face recognition systems either use handcrafted features or learn features discriminatively to improve recognition accuracy. This is different from the behavior of human brain. Intriguingly, even...
متن کاملOn Deep Multi-View Representation Learning: Objectives and Optimization
We consider learning representations (features) in the setting in which we have access to multiple unlabeled views of the data for learning while only one view is available for downstream tasks. Previous work on this problem has proposed several techniques based on deep neural networks, typically involving either autoencoder-like networks with a reconstruction objective or paired feedforward ne...
متن کاملDeep Multi-view Learning to Rank
We study the problem of learning to rank from multiple sources. Though multi-view learning and learning to rank have been studied extensively leading to a wide range of applications, multi-view learning to rank as a synergy of both topics has received little attention. The aim of the paper is to propose a composite ranking method while keeping a close correlation with the individual rankings si...
متن کاملExploiting Multi-layer Graph Factorization for Multi-attributed Graph Matching
Multi-attributed graph matching is a problem of finding correspondences between two sets of data while considering their complex properties described in multiple attributes. However, the information of multiple attributes is likely to be oversimplified during a process that makes an integrated attribute, and this degrades the matching accuracy. For that reason, a multi-layer graph structure-bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Network Science and Engineering
سال: 2022
ISSN: ['2334-329X', '2327-4697']
DOI: https://doi.org/10.1109/tnse.2022.3177307